SHOULD WE PAY THE SMOKERS? A META-ANALYSIS OF FINANCIAL INCENTIVES FOR SMOKING CESSATION AMONG SMOKERS IN LOW SOCIOECONOMIC GROUP

Fadzrul Hafiz Johani¹, Muhammad Aklil Abd Rahim¹,², Zakiah Othman³, Shamsul Azhar Shah¹*, Nazarudin Safian¹

¹Department of Community Health, Faculty of Medicine, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
²Department of Community and Family Medicine, Faculty of Medicine, Universiti Malaysia Sabah, Malaysia.
³Department of Social and Preventive Medicine, Faculty of Medicine, University Malaya, Kuala Lumpur, Malaysia.

*Correspondence: drsham@ppukm.ukm.edu.my, Tel: +60195581454, Fax: +603-9145 6670

https://doi.org/10.32827/ijphcs.6.2.113

Abstract

Today around 80% of smokers worldwide live in low- and middle-income countries, and in most countries, regardless of country income group, tobacco use is more concentrated in low socioeconomic status (SES) populations. This meta-analysis was conducted to review current available evidences to determine the effectiveness of financial incentive strategies on smoking cessation among low-SES smokers. Database search using PubMed, Science Direct and Cochrane Library were used to search financial incentive intervention prior to October 2018. Appraisal of methodological quality was assessed using Cochrane Collaboration’s tool. Six identified randomized control trials with 2450 and 2437 participants in intervention and control group respectively were included in the analysis. The random-effect model was used to combine results from individual studies. The pooled odds ratio (OR) was 2.16 (95% CI: 1.66-2.82) comparing financial incentive intervention with control. Heterogeneity was not significant across studies ($\chi^2 = 8.17$, $p = 0.15$, $I^2 = 39\%$). Current evidences from the RCT researches suggest that financial incentives are promising potential strategy to encourage smoking cessation among low-SES smokers.

Keyword: financial incentive, smoking cessation, low socioeconomic status, meta-analysis
1.0 Introduction

Cigarette smoking is the only legal product that kills a large proportion of its consumers when used as intended by its manufacturer. The World Health Organization (WHO) has estimated that around six million people die each year from tobacco use and projected to increase to eight million by 2030 if no strong tobacco control measures are put in place. Today around 80% of smokers worldwide live in low- and middle-income countries, and in most countries, regardless of country income group, tobacco use is more concentrated in low socioeconomic status (SES) populations where the burden of tobacco-related illness and death is heaviest. In addition, smokers in the low-SES are more likely to be trapped in the vicious cycle of smoking and disadvantages.

Some studies reported that smokers in low-SES are as likely to prioritise and attempt quitting as high-SES smokers, but they are less likely to be successful and confident in quitting. Smokers from low-SES face unique barriers to smoking cessation such as higher level of dependent on nicotine, higher level of stress in daily life and living in the pro-smoking community norm which increase the social stress and become a cue to smoke and prevent smoking cessation.

There is a growing enthusiasm for incentive-based programmes to change unhealthy behaviours, including smoking, weight loss, alcohol consumption, vaccination uptake and levels of physical activity. Incentives and rewards (terms used interchangeably) routinely feature in many smoking cessation programmes which can be used to encourage recruitment into the programme, to reward compliance with the process, and to reward cessation achieved at predefined stages. A variety of rewards have been used for these purposes, including cash payments, gift vouchers exchangeable for goods (excluding alcohol and cigarettes), food packages, certificates, promotional items such as clothes and others. The effectiveness of financial incentive strategies for smoking cessation were repeatedly evaluated in the general population. Thus, the aim of this study was to review current available evidences to determine the effectiveness of financial incentive strategies on smoking cessation among low socioeconomic smokers.

2.0 Methodology

2.1 Literature searches

This meta-analysis was performed based on PRISMA statement. The literature search was performed on three databases which are PubMed, ScienceDirect and Cochrane Library. The search strategy utilized the PICO framework to improve searching for clinical question. The search term used were: ("poor" OR "poverty" OR "low income" OR "disadvantage*" OR "low socioeconomic*") AND ("financial incentive" OR "financial reward" OR "cash" OR "monetary" OR “payment” OR “lotter*” OR “gift card” OR “voucher”) AND ("smoking" OR “tobacco” OR "quit smoking" OR “stop smoking” OR "smoking cessation" OR “smoking abstinence”). The search was not restricted to any duration timeline.
2.2 Study Selection

The process of study selection was conducted in two phases by two reviewers after excluding duplicates studies. In the first phase, a pair of reviewers (F.H.J and Z.O) were independently screened the titles and abstracts for the potential article to be included in the study. During this phase, irrelevant studies were excluded, and any disagreement will be solved by the third reviewer (M.A.A.R). In the second phase, the full-text articles were retrieved for detailed evaluation for selection of articles. Study were included if they meet the following criteria: (i) Randomized controlled trials (RCTs) or clinical controlled trial (CCTs) that described the evaluation of financial incentive intervention with smoking cessation; (ii) among low-income or socially disadvantages smokers and (iii) adult smoker, published prior to October 2018. Studies that were not published in English, that were case reports or observational studies or full-texts not available were excluded.

2.3 Data Extraction

The selected articles that met the inclusion and exclusion criteria by the two reviewers were retained for full review. Several authors were also contacted to get details of the eligible studies. The characteristic of each studies was examined including setting, study location, participants, intervention, follow-up period, primary outcome measures and results of the studies.

2.4 Assessment of methodological quality

Studies included in the review were assessed for methodological quality and risk of bias using Cochrane Collaboration’s tool 28. The study quality was assessed by two authors (F.H.J and N.S) and any disagreement were resolved through discussion. The Cochrane Collaboration’s tool has been widely used for assessing risk of bias in randomized trials 29. Cochrane Collaboration’s tools evaluates six domains: random sequence generation (assessing selection bias on allocation to intervention due to inadequate generation of a randomized sequence), allocation concealment (assessing selection bias on allocation to intervention due to inadequate concealment allocation prior to assignment), blinding of participant and personnel (assessing performance bias due to knowledge of the allocated interventions by participants and personnel during the study), blinding of outcome assessment (assessing detection bias due to knowledge of the allocated intervention by outcome assessor) incomplete outcome data (assessing attrition bias due to amount, nature or handling of incomplete outcome data) and selective reporting (assessing reporting bias due to selective outcome reporting). Each study was given a rating of “Low Risk”, “High Risk” or “Unclear Risk” in the methodological quality for each domain according to pre-defined criteria 28.

2.5 Meta-analysis

Random-effect model was used to estimate the pooled effect size from included studies as suggested by 30. Odds ratio (OR) with 95% confidence interval (CI) and statistical measure of heterogeneity (Chi² and I²) was calculated using Review Manager Ver5.3 31. All studies were included in the meta-analysis. Subgroup and sensitivity analysis were performed if p<0.10 and I² value ≥ 50%.
2.6 Outcome measures

The primary outcome measures were smoking abstinence at any point assessed after the start of the intervention. Smoking abstinence assessed at 12-month duration or less after quit date is considered short-term abstinence while smoking abstinence assessed at any point of time after 12 months is considered long-term abstinence. Biochemically validated evidence of quit rates was preferred over self-reported quit rates and biomarker of cotinine-confirmed measures were preferred over carbon monoxide (CO) measures. To ensure consistency in outcome measure, 7-day point prevalence abstinence rates were preferred although continuous abstinence rate were used if this was the only outcome measure reported. Analysis using intention-to-treat approach was used if possible. Where study had more than one type of intervention group, the most intensive condition was compared to the control group.

3.0 Results

3.1 Literature search

The initial search strategy yielded a total of 119 literatures where 18 articles were excluded because of duplication. The remaining 101 articles were screened for title and abstracts which further excluded another 62 articles for irrelevant studies (n=53), language other than English (n=4), review articles (n=4) and protocol study (n=1). The retained 39 articles were assessed for their eligibility. Among them; ten studies using different intervention other than financial incentive such as psychosocial intervention; 17 studies have different outcome measure such as measuring quality of life and tobacco cessation service engagement; five studies had different target population other than low-income or socially disadvantaged smoker; and one study measuring cost-effectiveness of financial incentive for smoking cessation among low income smoker. Six remaining articles were included for meta-analysis. A flow diagram describing the article retrieval based on PRISMA flow diagram is provided in Figure 1.
3.2 Characteristics of included studies

A detailed description of the included studies was listed in Table 1. The included studies were published between 2015 and 2018. All studies were RCTs study design. Five studies were conducted in United States\(^{20,21,33,35,36}\) and one study from Switzerland\(^{34}\). One study conducted among pregnant women\(^{20}\) and one in mentally-ill adult\(^{33}\) while others study participant were...
recruited from general population or community-based health care clinic. Total financial incentive offered range from USD150 to approximate USD1557 (converted from CHF1500 on 28 June 2012 \(^{37}\)) and the incentives were given in gift cards or monetary form.

3.3 Evaluation of Quality of Studies

Individual rating for risk of bias in each study against the six domains from Cochrane Collaboration’s tool are reported in Table 2. Overall, most of the studies has low risk of bias across all six domains but blinding of participant and personnel was not possible to perform. Detail of assessments were provided in Supplemental Material.

Table 2. Risk of bias assessment

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participant and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Others</th>
</tr>
</thead>
<tbody>
<tr>
<td>36</td>
<td>U</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>34</td>
<td>U</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>21</td>
<td>L</td>
<td>U</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>33</td>
<td>L</td>
<td>U</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>L</td>
</tr>
<tr>
<td>35</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
<tr>
<td>20</td>
<td>L</td>
<td>L</td>
<td>H</td>
<td>L</td>
<td>L</td>
<td>L</td>
<td>H</td>
</tr>
</tbody>
</table>

H: High Risk, L: Low Risk, U: Unclear Risk
Table 1. Characteristic of the studies

<table>
<thead>
<tr>
<th>Study, Design, Location</th>
<th>Participant Characteristic</th>
<th>Smoking Characteristic</th>
<th>Intervention</th>
<th>Incentive method; total; type</th>
<th>Primary Outcome Assessment; Follow-up</th>
<th>Result; Odds Ratio (Confidence Interval)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>Participant were socioeconomically disadvantaged smoker who visit the Tobacco Cessation Clinic of safety net hospital.</td>
<td>Cigarettes per day: Mean (SD) Intervention: 18.0(9.7) Control: 17.0(7.7)</td>
<td>Intervention: 75 participants received usual care for smoking cessation plus financial incentive.</td>
<td>$20 gift card for biochemically confirmed abstinence on the quit date then amount of the incentives increased by $5 with each weekly successive abstinent visit through 4 weeks after the quit date.</td>
<td>7-day PPA; 4 weeks follow-up verified by breath CO level.</td>
<td>Abstinence rates in intervention and control group were 49.3% versus 25.4%. OR = 2.87 (1.42-5.77) AOR = 3.40 (1.61-7.16) Adjusted for pharmacological treatment, race, gender, age, years of education, cigarettes smoked per day</td>
</tr>
<tr>
<td>Dallas, Texas</td>
<td>Age: Mean (SD) year Intervention= 51.7(7.3) Control=52.6(7.4) Gender: (Male%) / (Female%) Intervention: (48%) / (52%) Control: (36.6%) / (63.4%)</td>
<td>HIS: Mean(SD) Intervention= 3.4(1.3) Control= 3.1 (1.2)</td>
<td>Control: 71 participants received usual care for smoking cessation includes: 1. One initial educational session provided by a respiratory therapist 2. Weekly group support sessions facilitated by social workers. 3. Receive pharmacotherapy and individual follow-up weekly/as needed basis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Participant were low-income smoker enrolled from the general population</td>
<td>Cigarettes per day: Mean (SD) Intervention: 16(9) Control: 16(9)</td>
<td>Intervention: 404 participant received financial incentives plus Internet-based support.</td>
<td>Incentives given 6 times during 6 months from quit date: CHF 100 (1st week) CHF 150 (2nd week) CHF 200 (3rd week) CHF 300 (1st month) CHF 350 (3rd month) CHF 400 (6th month)</td>
<td>7-day PPA; 6- and 18-month follow-up both verified by breath CO level and either cotinine or thiocyanate measurements</td>
<td>Rates of continuous abstinence between months 6 and 18 were 9.48% in the intervention group and 3.71% in the control group OR = 2.72 (1.47-5.02) AOR = 2.94 (1.57-5.50) Adjusted for sex and past quit attempts</td>
</tr>
<tr>
<td>Geneva, Switzerland</td>
<td>Age: Mean (SD) year Intervention=32(11) Control=32(11) Gender: (Male%) / (Female%) Intervention: (53%) / (47%) Control: (44%) / (56%)</td>
<td>FTND: Mean(SD) Intervention= 4.1(2.3) Control= 3.9(2.4)</td>
<td>Control: 401 participant received Internet-based support, but no financial incentives Internet-based support is a Stop-tabac.ch smoking cessation website, which offers fact sheets, discussion forums, testimonials, and an interactive “coach” that provides automatically written, personalized feedback reports.</td>
<td>Total incentive CHF 1500 Type: Gift card</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>Wisconsin, United States</td>
<td>Participants were Medicaid recipients recruited from primary care patients and callers to the Wisconsin Tobacco Quit Line. Metadata:</td>
<td>Cigarettes per day: Mean (SD) Metadata:</td>
<td>Intervention 948 participants were offered five quitline cessation calls from Wisconsin Tobacco Quit Line (WTQL) and were encouraged to obtain cessation medication. Incentive were given in each counselling calls and during verified abstinence at 6-month visit. Metadata:</td>
<td>Participants in the incentive condition could receive payment of $30/call for up to five WTQL calls and $40 for producing biochemical evidence of abstinence at the 6-month follow-up visit. Metadata:</td>
<td>7-day PPA; at 6-months follow-up post study entry verified by breath CO level or cotinine or nicotine test Metadata:</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Mean (SD) year</td>
<td>Intervention=45.0(11.2)</td>
<td>Control=44.9(11.2)</td>
<td>FTND (Item 1: % Smoking Within 30 Min)</td>
<td>Intervention: 83.8%</td>
<td>Control: 87.1%</td>
<td></td>
</tr>
<tr>
<td>Gender: (Male%) / (Female%)</td>
<td>Intervention: (40.0%) / (60.0%)</td>
<td>Control: (39.4%) / (60.6%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>New Hampshire, United States</td>
<td>Participants were community-dwelling adult Medicaid beneficiaries with a mental illness diagnosis who were receiving services at community mental health centers (CMHC) Metadata:</td>
<td>Cigarettes per day: Mean (SD) Metadata:</td>
<td>Intervention 75 participants in pharmacotherapy only (PV) + incentives 152 participants in pharmacotherapy and facilitated quitline (PV+Q) + incentives 108 participants in pharmacotherapy and telephone cognitive-behavioral therapy (PV+CBT) + incentives Metadata:</td>
<td>Participants in the incentive conditions received $50 in cash for verified abstinence on Mondays, Wednesdays, and Fridays in the first two weeks of the quit attempt and additional $75 for verified abstinence in third and fourth week. Metadata:</td>
<td>7-day PPA; at 12 months follow up confirmed with breath CO and urine cotinine test (or solely breath CO if a participant was using NRT) Metadata:</td>
</tr>
<tr>
<td>Mean (SD) year</td>
<td>PV: 43.0 ± 10.8</td>
<td>PV+Q: 45.0 ± 10.7</td>
<td>PV+CBT: 46.0 ± 11.0</td>
<td>FTND: Mean(SD)</td>
<td>PV = 5.0(2.4)</td>
<td>PV+Q = 5.0(2.1)</td>
</tr>
<tr>
<td>Gender: (Male%) / (Female%)</td>
<td>PV: (44%) / (56%)</td>
<td>PV+Q: (34%) / (66%)</td>
<td>PV+CBT: (33%) / (67%)</td>
<td>Control 71 participants in PV only 151 participants in PV+Q 104 participants in PV+CBT Metadata:</td>
<td>Total incentive $ 190 Type: Monetary Metadata:</td>
<td>Adjusted for type of entry into study, motivation to quit and Fagerstrom-Test Nicotine Dependence (FTND) Metadata:</td>
</tr>
<tr>
<td>Study</td>
<td>Participants</td>
<td>Intervention</td>
<td>Control</td>
<td>Abstinence rates at 12 months follow up among participants in the navigation and incentives condition were 11.9% compared to 2.3% in control</td>
<td>Adjusted for age and sex</td>
<td></td>
</tr>
<tr>
<td>-------</td>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>--</td>
<td>-------------------------</td>
<td></td>
</tr>
<tr>
<td>Boston, Massachusetts, United States</td>
<td>Participants were low-SES and minority daily smokers with income ≤ $20,000/year receiving primary care at Boston Medical Center</td>
<td>177 participants received the same materials in control; in addition, they received up to 4 hours of patient navigation delivered over 6 months, and financial incentives</td>
<td>175 participants received a low literacy smoking cessation brochure and a list of hospital and community resources for smoking cessation.</td>
<td>OR = 5.8 (1.9-17.1)</td>
<td>AOR = 6.09 (2.01 – 18.40)</td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>Age: Mean (SD) year Intervention= 49.9(11) Control= 50.1(10)</td>
<td>FTND: Mean(SD) Intervention: 4.9(2) Control: 5.0(2)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender: (Male%) / (Female%) Intervention: (43%) / (57%) Control: (49%), (51%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cigarettes per day: Mean (SD) Intervention: 15.1(7) Control: 14.9(7)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wisconsin, United States</td>
<td>Participants were low-income (Medicaid-registered) pregnant smokers receiving perinatal smoking cessation program at Wisconsin Women’s Health Foundation (WWHF).</td>
<td>505 participants receiving smoking cessation counseling with monetary incentive</td>
<td>509 participants receiving smoking cessation counseling only</td>
<td>Incentive condition participants had a higher abstinence rate at 6-month post-birth than controls (14.65% vs. 9.23%) respectively</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RCT</td>
<td>Age: Mean (SD) year Intervention= 26.7(5.4) Control= 26.1(5.1)</td>
<td>FTND (Item 1: % Smoking Within 30 Min) Intervention: 54.7% Control: 58.4%</td>
<td></td>
<td>OR = 1.69 (1.14-2.49)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gender: All female</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FTND: Fagerström Test for Nicotine Dependence, HSI: Heaviness of Smoking Index, CHf: Swiss franc, $: United States Dollar, SD: Standard deviation, Currency conversion 1 CHf = 1.038 USD (on 28 June 2012 during period of study)
3.4 Publication Bias

The shape and symmetry of the funnel plot of log ORs from the six studies as shown in Figure 2 suggest that there is minimal publication bias present. All of the studies have high precision except for one study 35.

![Funnel plot of the six studies included in the meta-analysis.](image)

Figure 2. Funnel plot of the six studies included in the meta-analysis.

3.5 Main Analysis

The meta-analysis data using random-effect model 30 combining all six studies to explore the effect of financial incentive intervention for smoking cessation in low socioeconomic group of smokers shown in Figure 3. The forest plot illustrates the spread of the six studies risk estimates and their confidence intervals in relation to the summary OR of meta-analysis. There was no heterogeneity was found across studies ($p_{heterogeneity} = 0.15, I^2 = 39\%$). Based on the six studies, the pooled OR estimates showed that financial incentive intervention was significantly associated with smoking cessation among low socioeconomic group of smokers. (pooled OR: 2.16; 95% CI: 1.66-2.82).

When subgroup analysis done to explore between total amount of financial incentive received in the studies in relation to smoking cessation, the odds ratio of smokers who received financial incentive of more than USD500 was significantly magnified (pooled OR: 3.41; 95% CI: 1.67-6.97) compared to group that received financial incentive of less than USD500 (OR: 1.86; 95% CI: 1.53-2.26) as shown in Figure 4.
4.0 Discussion

This study analyzed the evidence from a published RCTs identified from different databases to evaluate the effectiveness of financial incentive intervention on smoking cessation among low-SES. There was only six RCTs fulfilled the criteria that addressing this issue. The result of the meta-analysis that involved 2450 and 2437 participants in intervention and control group respectively suggest that financial incentive intervention have significantly higher smoking cessation rates.
among low-SES (pooled OR: 2.16; 95% CI: 1.66-2.82) with homogeneity observed across studies (Chi²=8.17, p value=0.15, I² = 39%). The small number of relevant studies precludes conclusions regarding optimal amount of financial incentive to achieve effect even though the subgroup analysis showed that financial incentive more than USD500 have higher effect estimate. Furthermore, to date, there have been no studies done at regional area other than United States and Switzerland to explore different effect of financial incentive according to ethnic group that have different smoking behavior and level of nicotine dependent 38-40

This analysis provides a useful synthesis of RCT evidence on the effect of financial incentive on smoking cessation among low-SES and facilitates identification of future research opportunities. However, there are several caveats which concern the validity of the assessment results that must be acknowledged and interpreted with caution. The homogeneity across studies in the meta-analysis could be due to small numbers of included studies 28. Besides, the pooled effect estimate does not differentiate duration of follow up and amount of financial incentive offered in the intervention group which are varies among studies.

The six trials reviewed had some methodological limitation. One study 36 have a very short duration of 4-week follow up assessment thus it limits the ability of smoker to change behaviour and quit smoking because study by Phillipa Lally et al found that on average it takes 66 days for a habit to become ingrained 41. The Transtheoretical Model of Change which is the famous theoretical model of behaviour change has been the basis for developing effective intervention to promote health behaviour change. The Transtheoretical Model 42-44 is the model of intentional change that describes how people modify a problem behaviour or acquire a positive behaviour. The model discovered that long term effect after 12 months of health habits, 43% failed to maintain their healthy behaviour but the risk of relapse dropped to 7% if the behaviour maintained until 5 years. Thus, a very much longer period of time was required in the research to see the true effect of smoking cessation behaviour as compared to the maximum intervention period of 18 months among the studies. All trials were conducted in United States except study by Etter&Schmid 2016 which conducted in the Switzerland. Thus, the finding may not be generalized to countries that have different index in measuring socioeconomic status, diverse sociocultural and political environment. Some of the trials have relatively small sample size. Study by Kendzor et al had only 75 participants in intervention group and 71 participants in control group and this may attenuate the power of study. Apart from that, trial by Lasser et al had incorporated additional intervention in incentive group which is differ from the control group. Thus, the effect of financial incentive may be masked by the effect of additional intervention and may not reflect the actual significant different between the group. Finally, among all trials, none described evidence of dose-response relationship according to amount of financial incentive offered with smoking cessation rates. Thus, amount of financial incentive that would yield optimal smoking cessation rate is unknown.

The longest period of follow-up assessment was done at 18-month 34. Long term abstinence beyond this point doubt to be sustained as the trend of abstinence rates reduce by time 33,34,36. The incentive might have the short-term desired effect but still weaken the intrinsic motivation. Thus, once the incentives have been removed, the desired outcome will be pursued less eagerly, suggesting challenges for long-term sustainability 45. This similar pattern of behaviour changes was also seen in other incentive-based intervention 16,46-48.
Generally, the key finding of this analysis support those similar reviews of financial incentive interventions across wider range of smoker population\(^{13}\) in which they are effective in encouraging smoker to quit smoking.

5.0 Policy Implication

Smoking cessation among low-SES smokers through financial incentive strategies are promising potential component. Nonetheless, there are challenges that need to be addressed in the effort to implement and sustain incentive-based policies such as feasibility, sustainability of funding mechanism through multifaceted approach and substantial commitment from government and non-government organization. Regulation on eligibility for low-SES to be a non-smoker as a prerequisite to receive financial assistance from social welfare or other financial institution should be a mandatory implementation which is similar of what some country did for vaccination issues\(^ {49}\).

6.0 Future research

Future research in RCTs design to measure the effectiveness of financial incentive on smoking cessation in low-SES among diverse sociocultural may be required as smoking behaviour and nicotine dependence are genetically related\(^ {40,50}\). Furthermore, future RCTs should explicitly assess optimal amount of monetary offered to yield most desired effect of smoking cessation. Trial should be reported based on CONSORT statement\(^ {51}\) to facilitate quality assessment and ensure data availability for meta-analysis.

7.0 Conclusion

Current evidences from the RCT researches suggest that financial incentives are promising potential strategy to encourage smoking cessation among low-SES smokers.

Acknowledgements

The authors would like to thank the University Kebangsaan Malaysia for sponsoring this work to be published in an open access journal.

Author Contributions

Fadzrul Hafiz Johani et al.
https://doi.org/10.32827/ijphcs.6.2.113
F.H.J designed the study, F.H.J and Z.O performed data collection. F.H.J and M.A.A.R performed data analysis and wrote the manuscript. F.H.J and N.S assessed studies’ quality. M.R.A.M edited the manuscript. S.A.S provided suggestion for analysis and review the manuscript.

Conflict of Interest

The authors declare no conflict of interest.

Supplemental Material

Supplemental Table 1: Detail assessment on risk of bias

References

40 Kubota, T. & Yokoyama, A. in *Clinical Relevance of Genetic Factors in Pulmonary Diseases* 77-91 (Springer, 2018).

<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kendzor et al. 2015</td>
<td>Unclear Risk</td>
<td>Unclear Risk</td>
<td>High Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Participants recruited during their visit to the Tobacco Cessation Clinic at the Dallas County, Texas</td>
<td>Eligible participants were randomly assigned</td>
<td>Both participant and personnel were not blinded</td>
<td>primary outcome assessed using biochemically confirmed CO level</td>
<td>No loss of follow up for 4 weeks intervention period</td>
<td>outcomes that are of interest in the review have been reported in the pre-specified way.</td>
<td></td>
</tr>
<tr>
<td>Etter&Schmid 2016</td>
<td>Unclear Risk</td>
<td>Low Risk</td>
<td>High Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Procedure of randomization was not explained</td>
<td>allocation using sealed opaque envelope drawn by participants</td>
<td>Participants could not be blinded. Researchers were not blinded</td>
<td>primary outcome was verified by carbon monoxide and either cotinine or thiocyanate measurements</td>
<td>No Participants were excluded from analysis</td>
<td>outcomes that are of interest in the review have been reported in the pre-specified way.</td>
<td></td>
</tr>
<tr>
<td>Fraser et al. 2017</td>
<td>Low Risk</td>
<td>Unclear Risk</td>
<td>High Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Randomization occurred via computer- generated lists</td>
<td>Allocation of participant to treatment or control group not explained</td>
<td>Counsellors at the WTQL were not blinded. Participant in incentive group were not blinded</td>
<td>primary outcome was verified by biochemical evidence</td>
<td>using the intent-to-treat principle</td>
<td>outcomes that are of interest in the review have been reported in the pre-specified way.</td>
<td></td>
</tr>
<tr>
<td>Brunette et al. 2017</td>
<td>Low Risk</td>
<td>Unclear Risk</td>
<td>High Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>Low Risk</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>Computer-generated tables for each stratum within each site were used for random assignment</td>
<td>Participants were randomly assigned to receive incentives for biologically verified abstinence or no incentives</td>
<td>Both participant and personnel were not blinded</td>
<td>biologically confirmed with expired breath carbon monoxide and urine cotinine</td>
<td>Missing observations were imputed as smoking</td>
<td>outcomes that are of interest in the review have been reported in the pre-specified way.</td>
<td></td>
</tr>
</tbody>
</table>

Supplemental Table 1: Detail assessment on risk of bias
<table>
<thead>
<tr>
<th>Study</th>
<th>Random sequence generation</th>
<th>Allocation concealment</th>
<th>Blinding of participants and personnel</th>
<th>Blinding of outcome assessment</th>
<th>Incomplete outcome data</th>
<th>Selective reporting</th>
<th>Other bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lasser et al. 2017</td>
<td>Low Risk randomized participants using a random number generator</td>
<td>Low Risk using sealed envelopes</td>
<td>High Risk Unblinded study (participant and researcher were unblinded)</td>
<td>Low Risk assessment using biochemically confirmed with saliva cotinine or urine anabasine test</td>
<td>Low Risk Using intention-to-treat analysis</td>
<td>Low Risk outcomes that are of interest in the review have been reported in the pre-specified way.</td>
<td>High Risk Baseline smoking status was not confirmed biochemically</td>
</tr>
<tr>
<td>Baker et al. 2018</td>
<td>Low Risk First Breath staff used randomization tables prepared by the UW-CTRI to randomize women upon consent.</td>
<td>Low Risk Separate computer determined randomization tables were used</td>
<td>High Risk Both participant and personnel were not blinded</td>
<td>Low Risk assessment using biochemically confirmed CO level</td>
<td>Low Risk Participants with missing data for the primary outcome were counted as smoking</td>
<td>Low Risk outcomes that are of interest in the review have been reported in the pre-specified way.</td>
<td>High Risk Smoking status was not confirmed biochemically at baseline</td>
</tr>
</tbody>
</table>